ST2351 Probability and Theoretical Statistics

Sample Exam Questions

To successfully pass the exam you need to answer any 2 out of 4 questions

1. (a) Define the conditional probability of an event A given an event B.

(b) State and prove Bayes’ law. Any other law of probability may be used in the proof, as long as it is carefully stated.

(c) In the case *State of Connecticut v. Teal*, discrimination against black employees was alleged in a company.

 The company used a test to determine eligibility for promotion. Three hundred and seven people took the test, of which 48 were black (B) and 259 were white (W). Twenty six of the 226 that passed (P) were black, and 22 of the remaining 81 that failed (F) were black.

 Thus:

 $P(P) = \frac{226}{307}$, $P(F) = \frac{81}{307}$, $P(B|P) = \frac{26}{226}$ and $P(B|F) = \frac{22}{81}$.

 To discover if there was discrimination, the court in the case ruled that $P(P|B)$ had to be compared with $P(P|W)$. Use Bayes’ law to calculate these two probabilities.

(d) X and Y are continuous random variables. Define the conditional probability density function of X given Y.

(e) Let X and Y have the following joint pdf:

 $$f_{X,Y}(x, y) = \begin{cases}
 c(x + 2xy + y^2)^2, & \text{if } 0 < x < y < 1, \\
 0, & \text{otherwise},
 \end{cases}$$

 where c is a constant.

 i. Calculate c so that $f_{X,Y}$ is a legitimate joint density function.

 ii. Compute the conditional density function of X given Y.

2. (a) Define a continuous random variable.

(b) Let X be the time to failure of a certain engine component, which is exponentially distributed with a mean of 4 years.

 i. Write down the probability density function of X.

 ii. Calculate $P(2 \leq X \leq 5)$.

 iii. Give reasons why this probability $P(2 \leq X \leq 5)$ is actually the same as $P(2 < X \leq 5)$ and $P(2 < X < 5)$.

(c) Let Y be uniformly distributed on the interval $[-1, 1]$.

 i. Compute the mean and variance of Y

 ii. What is the moment generating function of Y?

 iii. Let Z be independent of Y and also be uniformly distributed on the interval $[-1, 1]$.

 Show, by means of moment generating functions or otherwise, that the probability density function of $S = Y + Z$ is

 $$f_S(s) = \begin{cases}
 0.5 + 0.25s, & \text{if } -2 \leq s \leq 0, \\
 0.5 - 0.25s, & \text{if } 0 < s \leq 2, \\
 0, & \text{otherwise}.
 \end{cases}$$

 You may use any theorem of moment generating functions, as long as it is carefully stated. You may use the fact that $\int se^{ts} ds = (e^{as} - 1)e^{ts}/t^2$.

3. (a) Define the joint probability mass function $p_{X,Y}(x,y)$ for two discrete random variables X and Y.

© Simon Wilson, 2013
(b) Define the expected value of \(g(X, Y) \), where \(g \) is a real-valued function, and \(X \) and \(Y \) are discrete random variables with joint mass function \(p_{X,Y}(x, y) \). Show that expectation is linear, that is \(E(aX + bY) = aE(X) + bE(Y) \) for any two constants \(a \) and \(b \).

(c) \(X \) and \(Y \) have joint mass function given in the following table:

<table>
<thead>
<tr>
<th>(X)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(c)</td>
<td>2c</td>
<td>0</td>
<td>5c</td>
</tr>
<tr>
<td>1</td>
<td>(c)</td>
<td>(c)</td>
<td>3c</td>
<td>2c</td>
</tr>
<tr>
<td>2</td>
<td>6c</td>
<td>2c</td>
<td>2c</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>(c)</td>
<td>3c</td>
<td>3c</td>
<td>(c)</td>
</tr>
</tbody>
</table>

where \(c \) is a constant

i. Explain why it must be that \(c = 1/33 \).
ii. Compute the marginal mass functions of \(X \) and \(Y \).
iii. Compute the covariance of \(X \) and \(Y \).
iv. Are \(X \) and \(Y \) independent?

4. (a) \(X \) and \(Y \) are jointly continuous random variables with joint probability density function:

\[
f_{X,Y}(x, y) = \begin{cases}
4xy, & 0 \leq x \leq 1, 0 \leq y \leq 1, \\
0, & \text{otherwise}.
\end{cases}
\]

Determine the joint probability density function of the random variables \(U = X + Y \) and \(V = X - Y \). You may use any theorem without proof as long as it is quoted carefully.

(b) State the central limit theorem.

(c) A point moves on the real line in a series of randomly sized jumps. The size of the \(i \)th jump is denoted \(X_i \). The \(X_i \) are independent and identically distributed uniform random variables on the interval \([-1, 1]\). Let \(S_n \) be the distance of the point from its starting position after \(n \) moves. Find an approximate value for \(P(-120 < S_{10800} < 60) \). The mean and variance of the \(X_i \) are 0 and 1/3 respectively.